Journal of Organometallic Chemistry, 80 (1974) 109–118 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ETUDE DE LA METALLATION DE L'OXYDE DE DIFERROCENYL PHENYL PHOSPHINE

LUCIEN EBERHARD, JEAN-PIERRE LAMPIN et FRANCOIS MATHEY Institut National de Recherche Chimique Appliquée, 91710 Vert-le-Petit (France) (Reçu le 12 avril 1974)

Summary

The reaction of n-BuLi with phenyldiferrocenylphosphine oxide yields a mixture of two isomeric dianions. This mixture reacts with Me₃SiCl, Br₂, CO₂, PhCHO and PhCH=NPh to give bifunctional products. With CoCl₂, Me₂SiCl₂, Ph₂SiCl₂, Bu₂SnCl₂ and PhCOOEt, the same mixture gives cyclic products. In almost every case each of these compounds is a mixture of two isomers corresponding to the original compound. The characteristic patterns of the PMR spectra are in full agreement with the structures proposed for the isomeric dianions.

Résumé

La réaction du n-BuLi avec l'oxyde de phényl diferrocenyl phosphine conduit à un mélange de deux dianions isomères. Ce mélange réagit avec Me_3SiCl, Br_2, CO_2 PhCHO et PhCH=NPh pour donner respectivement des produits bifonctionnels. Avec CoCl₂, Me_2SiCl_2 , Ph_2SiCl_2 , Bu_2SnCl_2 et PhCOOEt le même mélange fournit des produits cycliques. Pratiquement chacun de ces composés est lui-même un mélange de deux isomères. Les caractéristiques des spectres de RMN du proton des isomères sont en plein accord avec les structures proposées.

Depuis la synthèse de ses premiers membres par Sollott [1] la famille des ferrocenyl phosphines $(Fc)_n PR_{3-n}$ n'a reçu_qu'une attention épisodique. En particulier les deux réactions fondamentales du noyau ferrocénique, à savoir la métallation et les attaques électrophiles du type Friedel—Crafts n'ont été étudiées que dans des cas très particuliers. Ainsi Marr et Hunt [2] ont réalisé la métallation en 3 de la (diméthylaminométhyl)-2 ferrocenyl diphenyl phosphine (I) et condensé l'anion obtenu avec le formol, la benzophénone et le benzonitrile.

Il est à remarquer que, dans ce processus, le phosphore intervient pour bloquer la position 1 mais non pour activer un site particulier. La sélectivité en 3 de la métallation est obtenue grâce au groupement aminométhyle qui chélate le lithien formé. D'un autre côté Neuse [3] a montré que la réaction de $C_6H_5PCl_2$ sur le ferrocène à haute température dans le sulfolane (~ 170°) en présence d'un acide de Lewis (ZnCl₂) conduisait directement à des polymères du type [FcP(C_6H_5)]_n, Fc désignant un groupement ferrocenylène-1,2, -1,3 ou -1,1'. Comme, dans des conditions plus douces, cette même réaction conduit à la diferrocenyl phenyl phosphine [4], on peut admettre que les polymères proviennent d'une réaction de Friedel-Crafts de $C_6H_5PCl_2$ avec la diferrocenyl phenyl phosphine. Compte tenu de ces données bibliographiques limitées, nous avons donc entrepris l'étude de la métallation et de l'acylation des ferrocenyl phosphines et de leurs oxydes. Ce premier travail concerne la métallation; un deuxième travail étudiera, de son côté, l'acylation.

Etant donné le pouvoir puissamment électroattracteur des groupements phosphorylés*, on peut prévoir, a priori, que leur greffage sur un noyau ferrocénique augmentera l'aptitude de la molécule à la métailation, celle-ci s'effectuant préférentiellement en 2 sur le cyclopentadienyle directement lié au phosphore. Une étude UV des oxydes de ferrocenyl phosphines ayant abouti à la conclusion inattendue qu'il n'existait pratiquement pas d'interaction entre le F=O et le ferrocène dans ces produits [6], nous avons voulu d'abord vérifier la validité de notre hypothèse de base. Pour ce faire, nous avons comparé les données de RMN du proton du ferrocène et de quelques dérivés ferrocenyl phosphorés (TMS, CDCl₃) (Tableau 1).

On constate clairement que le phosphore (P^{111} ou $P^{\vee}=O$) provoque un déblindage du $C_5 H_4$ qui lui est lié tout en n'affectant que peu le $C_5 H_5$. Comme (suite à la page 114)

PHOSPHORES					
	FcH	Fc ₂ PC ₆ H ₅ II O	FcP(C ₆ H ₅) ₂ II O	Fc ₂ PC ₆ H ₅	
C₅H₅ C₅H₄P	δ 4.14 (a) ^α	δ 4.20 (a) δ 4.42 (b)	δ 4.21 (a) δ 4.43 (b)	δ 4.08 (a) δ 4.24 (b)	

TABLEAU 1 DONNEES DE RMN DU PROTON DU FERROCENE ET DE QUELQUES DERIVES FERROCENYL PHOSPHORES

a (a) (δ en ppm) pic fin; (b) massif elargi.

* On notera par exemple les mesures de constantes de Hammett effectuées par Tsvetkov et al. [5]. Aunsi δ para (C₆H₅)₂P = + 0.53.

TABLEAU 2

PREPARATION CT PROPRICTES DES PRODUITS DIFONCTIONNELS:

Fi		C6H5			~		
Réuctif	Z du produit	No.	Isomere A ^a		Isomère B b		Methode de sépuration de A et B
	obtenu		Rdt. (%)	F ('C) î	Rdt. (%)	۲ (مC) د	
Me ₃ SiCl	SiMe ₃	III	18	176	26	220	Chromatogruphie ^d : éluant CH ₂ Cl ₂ :
Br ₂	Br	IV	A: 6.5	205	non isolé		Chromatographie ^d : éluant Et ₂ O.
c0 ₂	СООН	v	A : 12 17	230 290	55	260	A pure A B moins soluble que A dans CIICI ₃
рьсно	cH	N	ß	290	25	290	A chromutographie ^d ; éluant MeCOOEt
PhCH≈NPh		IIV	non ısolë		15	250	b insolucie, recristations duts DMr. B chromatographie ^d ; éluant CH ₂ Cl ₂
^a A désigne l'is: ^c Point de fusio	mère dont les de n approximatif (1	ux C ₅ ll ₅ se différ inst., déc.) pns dai	concient en RMN a ns l'air ambiant (l	du proton. ^b B đế Joc Maquenne), ^d	signe l'isomère de Chromatographi	ont les deux C ₅ 11 ie sur colonne de	sont équivulents en KMN du proton. sei de sitice Merck 70-230 mesh.

Fe		Contraction of the second seco	-Le				
Réactlf	Y du produit obtenu	Na.	Isomere A ^a		Isomere B a		Méthode de séparation de A et 18
			Rdt. (%)	F (° C) b	Rdt. (%)	F (°C) b	
CoCl ₂	néant (pontage	VIII	10	2.3b	15	266	Chromotonia C. Aliman and C.
Me ₂ SICI ₂ Ph ₂ SICI ₂	airect) SiMe2 SiPh2	XIX	10	230	non isolé		Chromatographic - cluant McCOOEL
n-Bu ₂ SnCl ₂	SnBu ₂	: IX	non fsuli	200	16	290	ChromatpEraphic c. cluant Et20.
PhCODE1	_ua_j				01	160	Chromatographie ^c . cluant Et ₂ O
	НО		01	170	40	260	Chiomatographie c: éluant McCOOEt;
							B moins soluble que A dans C ₆ H ₆
I'our la défini	ltion de A el B vou	r Tableau 2. ^b Pc	oint de fusion inst	nntanc avec dec	omposition ^c Col	onne de gel de sil	ice Merck 70-230 mesh.

TABLEAU 3 PREPARATION ET PROPRIETES DES PRODUITS CYCLIQUES:

DONNELS	DE RMN DU	PROTON a				
Produit	C ₆ II ₅ (b) ^b		C ₅ H ₃ (b)	C ₅ II ₅ (a)	Groupement fonctioniel	JuryloS
	0	m, p				
Produits by	fouctionnels					ı
AII.	7.86	7.46	4.16	4.22 (5), 3.61 (5)	Me 151: 0.54 (0), 0.0 (9) (a)	cDCI
11:13	8.31	7.64	4.35	3.92 (10)	MejSi 0.22 (18) (h)	cDCI
IVA	7.93	7 61	3.96 ù 4.90	4.48 (5), 4.23 (5)		CDCI ₃
IVA.	16.7	7.60	3.75 ù 4.76	4.49 (5), 4.29 (5)		cpci
٨٨	7.87	7.67	3.98 а 5.25	4.44 (6), 4.15 (5)	COOII non wible	DMSO
VB	8.39	7.79	4.42 ú 5.26	4.11 (10)	COOII: 13.3 (b)	DMSO
VIA		í n s r	uffisumment soluble			
VIB	8 31	masquć	3.70 a 1.23	4.23 (10)	CHC ₆ H ₅ : 6.77 (a)	CDCI
VIIB	8.27	masqué	3.92 i 4.13	3.92 (10)	NII: 6.12 (a)	cocij
Produits c3	icliques					
VIIIA	7.97	7.58	4.24 û 4.64	4.31 (5), 3.53 (5)		cpcij
VIIIB	peu diffé- rencies	7.33	4.29 a 4.67	4.67 (10)		(1)
IXA	7.85	7.49	4.49 û 5.20	4.09 (5), 3.63 (5)	Me ₂ S1. 0.58 (a)	cDC13
XA	masqué	7.54	4.70 ü 5.17	3.91 (5), 3 08 (5)	Ph ₂ Si. 7.54 (b)	CDCI
XB	8.35	7.19	4.70	4.49 (10)	Ph ₂ Si: <i>m. p</i> 7.19 (b) <i>o</i> 7.63 (b)	cDCI
XIB	peu diffé-	7.29	4.35 à 4.67	4.60 (10)	SnBu ₂ : 0.80 à 1.78	coci ₃
XIIA	renciés 7.97	7.50	4.53 â 4.99	4.38 (5), 2.98 (5)	011: 3.24 (a)	coci3
					Ph : 7.38 (a)	
XIIB	7.68	7.39	4.22 a 4.44	4.71 (10)	OH: 3.57 (n) Ph : 7.11 (n)	coci ₃

 $^{\mathbf{d}}$ Déplacements chiméques δ mesurés en ppm. b (a) prc fin; (b) massif élargi.

TABLEAU 4

prévu le déblindage est plus important avec les oxydes de phosphines qu'avec les phosphines elles-mêmes. Nous avons donc entrepris nos études de métallation en utilisant comme produit de départ l'oxyde de phenyl diferrocenyl phosphine II [4], ce choix précis ayant été motivé par le désir d'obtenir des produits bifonctionnels ou cycliques.

Lorsqu'une mole de II, partiellement en solution dans le THF, est traitée à température ordinaire par deux moles de n-BuLi, on obtient un dianion entièrement soluble dans le milieu qui réagit avec divers composés pour donner des produits difonctionnels (Tableau 2) ou des produits cycliques (Tableau 3) suivant les cas. Les données de RMN du proton sont regroupées dans le Tableau 4.

Que la métallation s'effectue sur les cyclopentadiènes liés au phosphore se voit clairement sur les spectres de RMN du proton des produits obtenus. Les protons ferrocéniques se répartissent toujours en deux groupes: Dix protons se présentent sous la forme de un ou de deux pics fins (5 + 5) et correspondent aux cyclopentadiènes non substitués dont les hydrogènes sont équivalents. Six protons se présentent sous la forme d'un massif très élargi, sont en moyenne plus déblindés que les précédents et correspondent aux cyclopentadiènes disubstitués dont les hydrogènes sont très inéquivalents. Que, de plus, cette métallation s'effectue sur les positions en a des carbones directement liés au phosphore, découle de l'existence des produits cycliques et notamment de VIII. Une étude du modèle de Dreiding de II confirme en effet l'absolue impossibilité d'une cyclisation si la métallation avait lieu sur d'autres positions.

Pratiquement tous les produits préparés (cycliques ou non) existent sous deux formes isomères que nous avons généralement séparées par chromatographie sur gel de silice. Nous les avons conventionnellement désignées par A ou B suivant que, sur les spectres de RMN du proton, les cyclopentadiényles non substitués apparaissent globalement inéquivalents (2 pics fins de 5 protons) ou équivalents (1 pic fin de 10 protons)*. Nous discutons en détail plus loin l'origine de cette isomérie.

D'un point de vue purement synthétique, nous ne ferons que deux commentaires: La méthode de synthèse du phosphole VIII s'inspire du pontage par CoCl₂ du bromure de ferrocenyl magnésium aboutissant au biferrocenyle [7]. L'utilisation de CuCl₂ avec le même objectif n'a pas fourni de résultats concluants. D'un autre côté, la cyclisation aboutissant à XII résulte d'une attaque de l'ester benzoïque sur une des deux positions de métallation du dianion dérivé de II conduisant à une phénylcétone qui réagit alors intramoléculairement avec le deuxième site anionique pour fournir l'alcool cyclique. Ce type de cyclisation a déjà été mis en évidence avec les oxydes de di 3-thiényl phosphines [8].

Discussion de l'isomérie A-B

Avant toute chose notons un premier point important résultant de l'étude du modèle de Dreiding de II: Le phényle porté par le phosphore peut venir au voisinage immédiat des cyclopentadiényles non substitués. Dans cette situation

Dans certains cas nous n'avons reussie a isoler qu'un seul isomère de type B (VII et XI). Mais l'exemple le plus curieux concerne IV pour lequel nous avons isolé deux isomères de type A et pas d'isomère de type B. Ce point est discute ulterieurement.

Fig. 1. Structure de l'oxyde de difertocenyl phenyl phosphine.

Fig. 2. Structure du dianion XIII (les noyaux cyclopentadiényles non substitues, le phenyle et les deux atomes de fer sont omis. Les distances sont mesurées en 4).

s'instaure une interaction qui conduit à un blindage des C_5H_5 et à un déblindage du C_6H_5 puisque les faces riches en électrons π du benzène "voient" les tranches appauvries en électrons π des cyclopentadiènes (Fig. 1). A ce propos, on pourra consulter le travail de Turbitt et Watts [10] qui ont délimité les zones de blindage et de déblindage existant autour d'une molécule de ferrocène (en hachuré).

Il aurait été évidemment souhaitable d'étudier ce qui se passe lorsqu'on supprime ce type d'interaction en remplaçant le phényle par un alkyle; malheureusement les alkyl diferrocényl phosphines ne sont pas, à notre connaissance, décrites dans la littérature et les essais de synthèse que nous avons réalisés (RPCl₂ + 2FcH ou RPCl₂ + 2FcLi) n'ont donné aucun résultat positif.

Considérons maintenant le dianion XIII dérivé de II. Dans sa configuration la plus stable, les deux charges négatives seront les plus éloignées possible. L'étude du modèle de II montre que cette situation se produit lorsque les deux cyclopentadiènes liés au phosphore sont coplanaires, leur plan commun étant bissecteur de l'angle OPC (phényle) et les deux sites anioniques "regardant" vers l'intérieur de l'angle OPC (phényle). La Fig. 2 décrit cette situation; quelques distances approximatives, relevées sur le modèle de Dreiding, y figurent également.

Notons en outre que, dans cette situation, il y a chélation possible des lithiums par le P=O ce qui accroit substantiellement la préférence du dianion pour ce type de conformation. La chélation est en fait maximum lorsque P=O et C—Li sont coplanaires ce qui correspond exactement à la situation décrite dans la Fig. 1 (phényle au voisinage des cyclopentadiényles non substitués) ellemême très voisine de celle de la Fig. 2.

Ces points étant acquis, il existe trois formes isomères possibles pour le dianion XIII (Fig. 3). Dans la forme XIIIA la voisinage des deux sites anioniques est différent. Un des deux C_5H_5 est blindé par le phényle, l'autre non. En outre la rotation du phényle est partiellement empêchée (en RMN, protons *ortho* différenciés). Dans la forme XIIIB qui est symétrique, les voisinages des deux sites anioniques et des deux C_5H_5 sont identiques. Les deux C_5H_5 sont, en outre, blindés par le phényle mais sans doute moins que le C_5H_5 voisin du C_6H_5 dans XIIIA puisque l'effet de blindage est partagé entre eux deux. En outre la rota-

Fig. 3. Trois formes isomeres possibles pour le dianion XIII.

tion du phényle est totalement bloquée (en RMN, protons ortho très différenciés) et son déblindage est plus important que dans XIIIA.

La forme XIIIC est symétrique comme XIIIB. Ici, cependant, la rotation du phényle est libre, (protons *ortho* non différenciés) compte non tenu de la barrière à la rotation autour de la liaison P—C elle-même. En outre il ne subit pas l'effet déblindant des C_5H_5 . Par contre des derniers, qui se "voient" mutuellement par la tranche, sont très déblindés (plus que le C_5H_5 éloigné du C_6H_5 dans XIIIA).

On voit donc immédiatement que la forme XIIIA correspond à la situation effectivement observée en RMN du proton dans les isomères A bifonctionnels et la forme XIIIB à celle observée dans les isomères B bifonctionnels (comparer notamment les produits IIIA, IIIB et VA, VB).

Lorsqu'on provoque une cyclisation, il faut, au préalable, faire effectuer une rotation de 180° aux deux ferrocènes pour amener les deux sites anioniques à la distance la plus courte possible soit environ 2.8 Å (Fig. 2). Dans XIIIA les deux $C_s H_s$ permutent simplement leurs rôles, la situation globale demeurant inchangée: un $C_5 H_5$ reste blindé par le phényle, l'autre non; le $C_6 H_5$ est toujours partiellement bloqué. On ne constate effectivement pas de différences majeures entre les spectres RMN des isomères A cycliques et non cycliques.

Par contre, lorsqu'on effectue une rotation de 180° sur les deux ferrocènes de XIIIB on retrouve une situation analogue à celle de XIIIC, positions des sites anioniques mises à part. On doit donc vérifier que les C₅H₅ des produits B cycliques sont très déblindés (plus que les C₅H₅ déblindés des isomères A correspondants) et que leurs phényles sont à champ fort et presqu'en libre rotation. C'est exactement ce que l'on constate à la lecture des spectres de RMN (comparer notamment les produits VIIIA, VIIIB et XIIA, XIIB).

Avec les formules XIIIA et XIIIB, nous expliquons donc parfaitement l'ensemble des caractéristiques des spectres de RMN du proton des isomères A et B. Restent deux points à éclaircir: (a) l'inexistence des isomères C et (b) l'existence de deux isomères A pour le dérivé bromé IV.

L'inexistence des isomères C est dûe à la répulsion entre les $C_{s}H_{s}$, phénomène qui est d'ailleurs responsable de la configuration des biferrocenyles (ferrocènes en opposition, voir par exemple [9]) et qui défavorise grandement la formation de XIIIC. Cet effet répulsif n'existe, par contre, pas dans XIIIB où le phényle sert d'écran entre les deux C_5H_5 .

D'un autre côté, si l'on admet que, par suite de l'encombrement des substituants fonctionnels Z et de leur interaction éventuelle avec le P=O (interaction Si-O pour Z = SiMe₃, pont hydrogène pour Z = COOH, CHOHPh, CHPhNHPh), la conformation des produits non cycliques est sensiblement bloquée et reste très voisine de la conformation préférentiellement adoptée par les dianions XIII (ce qui est en accord avec les observations faites en RMN du proton et notamment avec la forte inéquivalence des C_5H_5 dans les isomères A et le blocage du phényle dans les isomères B), on peut alors admettre que les deux isomères IVA sont simplement des rotamères, le brome étant, de tous les substituants greffés, le plus petit et le seul à ne pas interagir avec l'oxygène du P=O. Il est d'ailleurs remarquable de constater que, de tous les isomères A, ce sont IVA et IVA' qui présentent la plus faible inéquivalence des $C_s H_s$, ce qui signifie sans doute que les barrières de rotation autour des liaisons P-ferrocènes y sont les plus faibles. Le fait que les inéquivalences entre C_5H_5 soient en moyenne nettement plus fortes dans les isomères A cycliques, où toute rotation est interdite, que dans les isomères A non cycliques constitue également une confirmation inducete de ce point de vue.

L'étude du cas moins complexe des biferrocenyles bifonctionnels [9] avait déjà mis en évidence, comme ici, l'existence d'isomères de propriétés physiques (points de fusion, R_f , solubilité) très différentes. Cependant des différences aussi exceptionnelles entre les spectres de RMN du proton de tels isomères n'avaient jamais été constatées auparavant et notamment l'inéquivalence des C_5H_5 due au groupement C_6H_5 —P. C'est, nous semble-t-il, ce qui donne à cette étude son principal intérêt sur le plan de la chimie du ferrocène en général.

Partie expérimentale

Métallation de l'oxyde de diferrocenyl phényl phosphine: 4.94 g (0.01 mole) d'oxyde de phosphine en solution partielle dans 100 ml de THF sont traités à température ambiante par 10 ml (environ 0.022 mole) d'une solution de n-butyllithium à 20-25% dans l'hexane. On agite à température ambiante pendant 1 h 30. La solution est devenue entièrement limpide et sa couleur a viré du jaune clair au rouge sombre. On ajoute alors 0.025 mole du réactif en solution dans le tétrahydrofuranne (cas de III, VI, VII, IX, X, XI et XII), dans le chlorure de méthylène (cas de IV) ou à l'état solide (cas de VIII). On laisse réagir pendant 2 à 3 h à température ambiante et on hydrolyse par une solution aqueuse de chlorure d'ammonium. On élimine les solvants organiques par concentration et on extrait la solution résiduelle par du chloroforme. La couche organique est séchée sur sulfate de magnésium, évaporée à sec, puis chromatographiée sur colonne de gel de silice comme indiqué précédemment pour isoler les deux isomères A et B.

Pour obtenir V, on fait barboter lentement pendant 2 h un courant de CO₂ dans la solution de dianion dans le THF. On hydrolyse ensuite par de l'acide chlorhydrique dilué. On extrait par du chloroforme, on concentre à sec et on isole VB puis VA par cristallisation fractionnée dans le chloroforme.

Remerciements

Ce travail a été réalisé avec l'aide matérielle de la D.R.M.E. Il a été mené à bien avec la collaboration technique de Monsieur Marcel Longeau.

Bibliographie

- 1 G.P. Sollott et E. Howard, Jr., J. Org. Chem., 27 (1962) 4034.
- 2 G. Mart et T. Hunt, J. Chem. Soc. C, (1969) 1070.
- 3 E.W. Neuse et G.J. Chris, J. Macromol. Sci. A, 1 (1967) 371.
- 4 G.P. Sollott, H.E. Mertwoy, S. Portnoy et J.L. Snead, J. Org. Chem., 28 (1963) 1090.
- 5 E.N. Tsvetkov, D.I. Lobanov, M.M. Makhamatkhanov et M.I. Kabachnik, Tetrahedron, 25 (1969) 5623.
- 6 E.W. Neuse, J. Organometal. Chem., 7 (1967) 349.
- 7 H. Shechter et J.F. Helling, J. Org. Chem., 26 (1961) 1034.
- 8 J.P. Lampin et F. Mathey, J. Crganometal. Chem., 71 (1974) 239.
- 9 K. Schlögl et M. Weiser, Monalsh. Chem., 100 (1969) 1515.
- 10 T D. Turbitt et W.E. Watts, Tetrahedron, 28 (1972) 1227